久久538,国产精品第一区在线观看,特黄又色牲交视频免费…,亚洲欧美综合在线观看,一区二区三区毛片免费,欧美黄网站免费观看,女人18**毛片一级毛片

中學數(shù)學教案

時間:2024-08-27 18:32:22 教案 我要投稿

中學數(shù)學教案

  作為一名優(yōu)秀的教育工作者,時常需要用到教案,教案是教材及大綱與課堂教學的紐帶和橋梁。優(yōu)秀的教案都具備一些什么特點呢?以下是小編精心整理的中學數(shù)學教案,希望對大家有所幫助。

中學數(shù)學教案

中學數(shù)學教案1

  中學數(shù)學三角函數(shù)教案模板通過對三角函數(shù)模型的簡單應用的學習,使學生初步學會由圖象求解析式的方法,根據(jù)解析式作出圖象并研究性質。

  一、教學目標:

 。1)通過對三角函數(shù)模型的簡單應用的學習,使學生初步學會由圖象求解析式的方法,根據(jù)解析式作出圖象并研究性質;

 。2)體驗實際問題抽象為三角函數(shù)模型問題的過程,體會三角函數(shù)是描述周期變化現(xiàn)象的重要函數(shù)模型;

 。3)讓學生體驗一些具有周期性變化規(guī)律的實際問題的數(shù)學建模思想,從而培養(yǎng)學生的建模、分析問題、數(shù)形結合、抽象概括等能力。二、教學重點、難點:

  重點:用三角函數(shù)模型解決一些具有周期變化規(guī)律的實際問題.難點:將某些問題抽象為三角函數(shù)模型。三、教學方法:

  數(shù)學是一門培養(yǎng)人的思維、發(fā)展人的思維的重要學科,本節(jié)課的內容是三角函數(shù)的應用,所以應讓學生多參與,讓其自主探究分析問題,然后由老師啟發(fā)、總結、提煉,升華為分析和解決問題的能力。四、教學過程:(一)課題引入

  生活中普遍存在著周期性變化規(guī)律的現(xiàn)象,晝夜交替四季輪回,潮漲潮散、云卷云舒,情緒的起起落落,庭前的花開花謝,一切都逃不過數(shù)學的眼睛!這節(jié)課我們就來學習如何用數(shù)學的眼睛洞察我們身邊存在的周期現(xiàn)象-----1.6三角函數(shù)模型的簡單應用。(二)典型例題

 。1)由圖象探求三角函數(shù)模型的解析式

  例1.如圖,某地一天從6~14時的溫度變化曲線近似滿足函數(shù)錯誤!未找到引用源。.

 。1)求這一天6~14時的最大溫差;(2)寫出這段曲線的函數(shù)解析式

  設計意圖:切入本節(jié)課的課題,讓學生明確學習任務和目標。同時以設問和探索的.方式導入新課,創(chuàng)設情境,激發(fā)思維,做好基礎鋪墊,讓學生帶著問題,有目的地參與后續(xù)教學活動。

  【問題的反思】:

 、僖话愕兀蟪龅暮瘮(shù)模型只能近似刻畫這天某個時段的溫度變化情況,因此應當特

  別注意自變量的變化范圍;

  ②與學生一起探索?的各種求法;(這是本題的關鍵!也是難點!)

  設計意圖:提出問題,有學生動腦分析,自主探究,培養(yǎng)學生數(shù)形結合的數(shù)學思考習慣。

  歸納小結

  本節(jié)課學習了三角函數(shù)模型的簡單應用,進一步突出了函數(shù)來源于生活應用于生活的思想,體驗了一些具有周期性變化規(guī)律的實際問題的數(shù)學“建!彼枷。五、作業(yè)布置

  1.書面作業(yè):(1)習題1.61---3

 。2)一半徑為3m的水輪如右圖所示,水輪圓心O距離水面2m,已知水輪每分鐘轉動4圈,如果當水輪上P點從水中浮現(xiàn)時(圖中

  求P點相對于水面的高度h(m)與時間t(s)之間的函數(shù)關系式P點第一次達到最高點約要多長時間?

  2.探究性作業(yè):請學生分小組對以下的問題或自選問題進行合作探究,并將各組的結果(無論成與。┲瞥蒔PT在下節(jié)課上進行交流。

  問題1電視臺的不同欄目播出的時間周期是不同的。有的每天播出,有的隔天播出,有的一周播出一次。請查閱當?shù)氐碾娨暪?jié)目預告,統(tǒng)計不同欄目的播出周期。

  問題2請你調查你們地區(qū)每天的用電情況,制定一項“消峰平谷”的電價方案。

  問題3一個城市所在的經(jīng)度和緯度是如何影響日出和日落的時間的?收集其他有關的數(shù)據(jù)并提供理論證據(jù)支持你的結論。

  這一過程是探究活動在時間上的延續(xù),是對課堂學習的必要補充。

  二、教學反思

  以問題引導教學,讓學生聽有所思,思有所獲,獲有所感。問題串的設計,使學習內容在難度和強度上循序漸進而又螺旋上升,并通過互動逐一達成教學目標,突出重點,突破難點,較好的提高了課堂教學的有效性。七、超級鏈接

  1、設y?f(t)是某港口水的深度關于時間t(時)的函數(shù),其中0?t?24,下表是該港口某一天從0至24時記錄的時間t與水深y的關系.

中學數(shù)學教案2

  教學目標

  1, 整理前兩個學段學過的整數(shù)、分數(shù)(包括小數(shù))的知識,掌握正數(shù)和負數(shù)的概念;

  2, 能區(qū)分兩種不同意義的量,會用符號表示正數(shù)和負數(shù);

  3, 體驗數(shù)學發(fā)展的一個重要原因是生活實際的需要,激發(fā)學生學習數(shù)學的興趣。

  教學難點 正確區(qū)分兩種不同意義的量。

  知識重點 兩種相反意義的量

  教學過程(師生活動) 設計理念

  設置情境

  引入課題 上課開始時,教師應通過具體的例子,簡要說明在前兩個學段我們已經(jīng)學過的數(shù),并由此請學生思考:生

  活中僅有這些“以前學過的數(shù)”夠用了嗎?下面的例子

  僅供參考.

  師:今天我們已經(jīng)是七年級的學生了,我是你們的數(shù)學老師.下面我先向你們做一下自我介紹,我的名字是__,身高1.73米,體重58.5千克,今年40歲.我們的班級是七(13)班,有60個同學,其中男同學有22個,占全班總人數(shù)的37%…

  問題1:老師剛才的介紹中出現(xiàn)了幾個數(shù)?分別是什么?你能將這些數(shù)按以前學過的數(shù)的分類方法進行分類嗎?

  學生活動:思考,交流

  師:以前學過的數(shù),實際上主要有兩大類,分別是整數(shù)和分數(shù)(包括小數(shù)).

  問題2:在生活中,僅有整數(shù)和分數(shù)夠用了嗎?

  請同學們看書(觀察本節(jié)前面的幾幅圖中用到了什么數(shù),讓學生感受引入負數(shù)的必要性)并思考討論,然后進行交流。

  (也可以出示氣象預報中的氣溫圖,地圖中表示地形高低地形圖,工資卡中存取錢的記錄頁面等)

  學生交流后,教師歸納:以前學過的數(shù)已經(jīng)不夠用了,有時候需要一種前面帶有“-”的新數(shù)。 先回顧小學里學過的數(shù)的類型,歸納出我們已經(jīng)學了整數(shù)和分數(shù),然后,舉一些實際生活中共有相反意義的量,說明為了表示相反意義的量,我們需要引入負數(shù),這樣做強調了數(shù)學的嚴密性,但對于學生來說,更多

  地感到了數(shù)學的枯燥乏味為了既復習小學里學過的數(shù),又能激發(fā)學生的學習興趣,所以創(chuàng)設如下的問題情境,以盡量貼近學生的實際.

  這個問題能激發(fā)學生探究的欲望,學生自己看書學習是培養(yǎng)學生自主學習的重要途徑,都應予以重視。

  以上的情境和實例使學生體會生活中處處有數(shù)學,通過實例,使學生獲取大量的感性材料,為正確建立相反意義的量奠定基礎。

  分析問題

  探究新知 問題3:前面帶有“一”號的新數(shù)我們應怎樣命名它呢?為什么要引人負數(shù)呢?通常在日常生活中我們用正數(shù)和負數(shù)分別表示怎樣的量呢?

  這些問題都必須要求學生理解.

  教師可以用多媒體出示這些問題,讓學生帶著這些問題看書自學,然后師生交流.

  這階段主要是讓學生學會正數(shù)和負數(shù)的表示.

  強調:用正,負數(shù)表示實際問題中具有相反意義的量,而相反意義的量包含兩個要素:一是它們的意義相反,如向東與向西,收人與支出;二是它們都是數(shù)量,而且是同類的量. 這些問題是這節(jié)課的主要知識,教師要清楚地向學生說明,并且要注意語言的準確與規(guī)范,要舍得花時間讓學充分發(fā)表想法。

  舉一反三思維拓展經(jīng)過上面的討論交流,學生對為什么要引人負數(shù),對怎樣用正數(shù)和負數(shù)表示兩種相反意義的量有了初步的`理解,教師可以要求學生舉出實際生活中類似的例子,以加深對正數(shù)和負數(shù)概念的理解,并開拓思維.

  問題4:請同學們舉出用正數(shù)和負數(shù)表示的例子.

  問題5:你是怎樣理解“正整數(shù)”“負整數(shù),’’正分數(shù)”和“負分數(shù)”的呢?請舉例說明.

  能否舉出例子是學生對知識掌握程度的體現(xiàn),也能進一步幫助學生理解引負數(shù)的必要性

  課堂練習 教科書第5頁練習

  小結與作業(yè)

  課堂小結 圍繞下面兩點,以師生共同交流的方式進行:

  1, 0由于實際問題中存在著相反意義的量,所以要引人負數(shù),這樣數(shù)的范圍就擴大了;

  2,正數(shù)就是以前學過的0以外的數(shù)(或在其前面加“+”),負數(shù)就是在以前學過的0以外的數(shù)前面加“-”。

  本課作業(yè) 教科書第7頁習題1.1 第1,2,4,5(第3題作為下節(jié)課的思考題。

  作業(yè)可設必做題和選 做題,體現(xiàn)要求的層次性,以滿足不同學生的需要

中學數(shù)學教案3

  教師提問3:以上變形依據(jù)是什么?

  學生回答:等式的性質1。

  歸納:像上面那樣把等式一邊的'某項變號后移到另一邊,叫做移項。

  師生共同完成解答過程。

  設問4:以上解方程中“移項”起了什么作用?

  學生討論、回答,師生共同整理:

  通過移項,含未知數(shù)的項與常數(shù)項分別位于方程左右兩邊,使方程更接近于x=a的形式。

  教師提問5:解這個方程,我們經(jīng)歷了那些步驟?列方程時找了怎樣的相等關系?

  學生思考回答。

  教師關注:

 。1)學生對列方程解決實際問題的一般步驟:設未知數(shù),列代數(shù)式,列方程,是否清楚?

  在參與觀察、比較、嘗試、交流等數(shù)學活動中,體驗探究發(fā)現(xiàn)成功的快樂。

  活動三 解法運用

  例2解方程

  3x+7=32-2x

  教師:出示問題

  提問:解這個方程時,第一步我們先干什么?

  學生講解,獨立完成,板演。

  提問:“移項”是注意什么?

  學生:變號。

  教師關注:學生“移項”時是否能夠注意變號。

  通過這個例題,掌握“ax+b=cx+d”類型的一元一次方程的解法。體驗“移項”這種變形在解方程中的作用,規(guī)范解題步驟。

  活動四 鞏固提高

中學數(shù)學教案4

  教學建議

  知識結構

  重難點分析

  本節(jié)的重點是的性質和判定定理。是在平行四邊形的前提下定義的,首先她是平行四邊形,但它是特殊的平行四邊形,特殊之處就是“有一組鄰邊相等”,因而就增加了一些特殊的性質和不同于平行四邊形的判定方法。的這些性質和判定定理即是平行四邊形性質與判定的延續(xù),又是以后要學習的正方形的基礎。

  本節(jié)的難點是性質的靈活應用。由于是特殊的平行四邊形,所以它不但具有平行四邊形的性質,同時還具有自己獨特的性質。如果得到一個平行四邊形是,就可以得到許多關于邊、角、對角線的條件,在實際解題中,應該應用哪些條件,怎樣應用這些條件,常常讓許多學生手足無措,教師在教學過程中應給予足夠重視。

  教法建議

  根據(jù)本節(jié)內容的特點和與平行四邊形的關系,建議教師在教學過程中注意以下問題:

  1.的知識,學生在小學時接觸過一些,可由小學學過的知識作為引入。

  2.在現(xiàn)實中的實例較多,在講解的性質和判定時,教師可自行準備或由學生準備一些生活實例來進行判別應用了哪些性質和判定,既增加了學生的參與感又鞏固了所學的知識.

  3.如果條件允許,教師在講授這節(jié)內容前,可指導學生按照教材148頁圖4-33所示,制作一個平行四邊形作為教學過程中的道具,既增強了學生的動手能力和參與感,有在教學中有切實的體例,使學生對知識的掌握更輕松些.

  4.在對性質的講解中,教師可將學生分成若干組,每個學生分別對事先準備后的圖形進行邊、角、對角線的測量,然后在組內進行整理、歸納.

  5.由于和的性質定理證明比較簡單,教師可引導學生分析思路,由學生來進行具體的證明.

  6.在性質應用講解中,為便于理解掌握,教師要注意題目的層次安排。

  一、教學目標

  1.掌握概念,知道與平行四邊形的關系.

  2.掌握的性質.

  3.通過運用知識解決具體問題,提高分析能力和觀察能力.

  4.通過教具的演示培養(yǎng)學生的學習興趣.

  5.根據(jù)平行四邊形與矩形、的從屬關系,通過畫圖向學生滲透集合思想.

  6.通過性質的學習,體會的圖形美.

  二、教法設計

  觀察分析討論相結合的方法

  三、重點·難點·疑點及解決辦法

  1.教學重點:的性質定理.

  2.教學難點:把的'性質和直角三角形的知識綜合應用.

  3.疑點:與矩形的性質的區(qū)別.

  四、課時安排

  1課時

  五、教具學具準備

  教具(做一個短邊可以運動的平行四邊形)、投影儀和膠片,常用畫圖工具

  六、師生互動活動設計

  教師演示教具、創(chuàng)設情境,引入新課,學生觀察討論;學生分析論證方法,教師適時點撥

  七、教學步驟

  【復習提問】

  1.什么叫做平行四邊形?什么叫矩形?平行四邊形和矩形之間的關系是什么?

  2.矩形中對角線與大邊的夾角為,求小邊所對的兩條對角線的夾角.

  3.矩形的一個角的平分線把較長的邊分成、,求矩形的周長.

  【引入新課】

  我們已經(jīng)學習了一種特殊的平行四邊形——矩形,其實還有另外的特殊平行四邊形,這時可將事先按課本中圖4-38做成的一個短邊也可以活動的教具進行演示,如圖,改變平行四邊形的邊,使之一組鄰進相等,引出概念.

  【講解新課】

  1.定義:有一組鄰邊相等的平行四邊形叫做.

  講解這個定義時,要抓住概念的本質,應突出兩條:

 。1)強調是平行四邊形.

 。2)一組鄰邊相等.

  2.的性質:

  教師強調,既然是特殊的平行四邊形,因此它就具有平行四邊形的一切性質,此外由于它比平行四邊形多了“一組鄰邊相等”的條件,和矩形類似,也比平行四邊形增加了一些特殊性質.

  下面研究的性質:

  師:同學們根據(jù)的定義結合圖形猜一下有什么性質(讓學生們討論,并引導學生分別從邊、角、對角線三個方面分析).

  生:因為是有一組鄰邊相等的平行四邊形,所以根據(jù)平行四邊形對邊相等的性質可以得到.

  性質定理1:的四條邊都相等.

  由的四條邊都相等,根據(jù)平行四邊形對角線互相平分,可以得到

  性質定理2:的對角線互相垂直并且每一條對角線平分一組對角.

  引導學生完成定理的規(guī)范證明.

  師:觀察右圖,被對角線分成的四個直角三角形有什么關系?

  生:全等.

  師:它們的底和高和兩條對角線有什么關系?

  生:分別是兩條對角線的一半.

  師:如果設的兩條對角線分別為、,則的面積是什么?

  生:

  教師指出當不易求出對角線長時,就用平行四邊形面積的一般計算方法計算面積.

  例2已知:如右圖,是△的角平分線,交于,交于.

  求證:四邊形是.

 。ㄒ龑W生用定義來判定.)

  例3已知的邊長為,對角線,相交于點,如右圖,求這個的對角線長和面積.

 。1)按教材的方法求面積.

 。2)還可以引導學生求出△一邊上的高,即的高,然后用平行四邊形的面積公式計算的面積.

  【總結、擴展】

  1.小結:(打出投影)(圖4)

 。1)、平行四邊形、四邊形的從屬關系:

 。2)性質:圖5

  ①具有平行四邊形的所有性質.

 、谔赜行再|:四條邊相等;對角線互相垂直,且平分每一組對角.

  八、布置作業(yè)

  教材P158中6、7、8,P196中10

  九、板書設計

  標題

  定義……

  性質例2…… 小結:

  性質定理1:……例3…… ……

  性質定理2:……

  十、隨堂練習

  教材P151中1、2、3

  補充

  1.的兩條對角線長分別是3和4,則周長和面積分別是___________、___________.

  2.周長為80,一對角線為20,則相鄰兩角的度數(shù)為___________、____________.

中學數(shù)學教案5

  一、目的要求

  1、使學生初步理解一次函數(shù)與正比例函數(shù)的概念。

  2、使學生能夠根據(jù)實際問題中的條件,確定一次函數(shù)與正比例函數(shù)的解析式。

  二、內容分析

  1、初中主要是通過幾種簡單的函數(shù)的初步介紹來學習函數(shù)的,前面三小節(jié),先學習函數(shù)的概念與表示法,這是為學習后面的幾種具體的函數(shù)作準備的,從本節(jié)開始,將依次學習一次函數(shù)(包括正比例函數(shù))、二次函數(shù)與反比例函數(shù)的有關知識,大體上,每種函數(shù)是按函數(shù)的解析式、圖象及性質這個順序講述的,通過這些具體函數(shù)的學習,學生可以加深對函數(shù)意義、函數(shù)表示法的認識,并且,結合這些內容,學生還會逐步熟悉函數(shù)的知識及有關的數(shù)學思想方法在解決實際問題中的應用。

  2、舊教材在講幾個具體的'函數(shù)時,是按先講正反比例函數(shù),后講一次、二次函數(shù)順序編排的,這是適當照顧了學生在小學數(shù)學中學了正反比例關系的知識,注意了中小學的銜接,新教材則是安排先學習一次函數(shù),并且,把正比例函數(shù)作為一次函數(shù)的特例予以介紹,而最后才學習反比例函數(shù),為什么這樣安排呢?第一,這樣安排,比較符合學生由易到難的認識規(guī)津,從函數(shù)角度看,一次函數(shù)的解析式、圖象與性質都是比較簡單的,相對來說,反比例函數(shù)就要復雜一些了,特別是,反比例函數(shù)的圖象是由兩條曲線組成的,先學習反比例函數(shù)難度可能要大一些。第二,把正比例函數(shù)作為一次函數(shù)的特例介紹,既可以提高學習效益,又便于學生了解正比例函數(shù)與一次函數(shù)的關系,從而,可以更好地理解這兩種函數(shù)的概念、圖象與性質。

  3、“函數(shù)及其圖象”這一章的重點是一次函數(shù)的概念、圖象和性質,一方面,在學生初次接觸函數(shù)的有關內容時,一定要結合具體函數(shù)進行學習,因此,全章的主要內容,是側重在具體函數(shù)的講述上的。另一方面,在大綱規(guī)定的幾種具體函數(shù)中,一次函數(shù)是最基本的,教科書對一次函數(shù)的討論也比較全面。通過一次函數(shù)的學習,學生可以對函數(shù)的研究方法有一個初步的認識與了解,從而能更好地把握學習二次函數(shù)、反比例函數(shù)的學習方法。

  三、教學過程

  復習提問:

  1、什么是函數(shù)?

  2、函數(shù)有哪幾種表示方法?

  3、舉出幾個函數(shù)的例子。

  新課講解:

  可以選用提問時學生舉出的例子,也可以直接采用教科書中的四個函數(shù)的例子。然后讓學生觀察這些例子(實際上均是一次函數(shù)的解析式),y=x,s=3t等。觀察時,可以按下列問題引導學生思考:

  (1)這些式子表示的是什么關系?(在學生明確這些式子表示函數(shù)關系后,可指出,這是函數(shù)。)

  (2)這些函數(shù)中的自變量是什么?函數(shù)是什么?(在學生分清后,可指出,式子中等號左邊的y與s是函數(shù),等號右邊是一個代數(shù)式,其中的字母x與t是自變量。)

  (3)在這些函數(shù)式中,表示函數(shù)的自變量的式子,分別是關于自變量的什么式呢?(這題牽扯到有關整式的基本概念,表示函數(shù)的自變量的式子也就是等號右邊的式子,都是關于自變量的一次式。)

  (4)x的一次式的一般形式是什么?(結合一元一次方程的有關知識,可以知道,x的一次式是kx+b(k≠0)的形式。)

  由以上的層層設問,最后給出一次函數(shù)的定義。

  一般地,如果y=kx+b(k,b是常數(shù),k≠0)那么,y叫做x的一次函數(shù)。

  對這個定義,要注意:

  (1)x是變量,k,b是常數(shù);

  (2)k≠0 (當k=0時,式子變形成y=b的形式。b是x的0次式,y=b叫做常數(shù)函數(shù),這點,不一定向學生講述。)

  由一次函數(shù)出發(fā),當常數(shù)b=0時,一次函數(shù)kx+b(k≠0)就成為:y=kx(k是常數(shù),k≠0)我們把這樣的函數(shù)叫正比例函數(shù)。

  在講述正比例函數(shù)時,首先,要注意適當復習小學學過的正比例關系,小學數(shù)學是這樣陳述的:

  兩種相關聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數(shù)的比值(也就是商)一定,這兩種量就叫做成正比例的量,它們的關系叫做正比例關系。

  寫成式子是(一定)

  需指出,小學因為沒有學過負數(shù),實際的例子都是k>0的例子,對于正比例函數(shù),k也為負數(shù)。

  其次,要注意引導學生找出一次函數(shù)與正比例函數(shù)之間的關系:正比例函數(shù)是特殊的一次函數(shù)。

  課堂練習:

  教科書13、4節(jié)練習第1題.

中學數(shù)學教案6

  知識技能

  會通過“移項”變形求解“ax+b=cx+d”類型的一元一次方程。

  數(shù)學思考

  1.經(jīng)歷探索具體問題中的數(shù)量關系過程,體會一元一次方程是刻畫實際問題的有效數(shù)學模型。進一步發(fā)展符號意識。

  2.通過一元一次方程的學習,體會方程模型思想和化歸思想。

  解決問題

  能在具體情境中從數(shù)學角度和方法解決問題,發(fā)展應用意識。

  經(jīng)歷從不同角度尋求分析問題和解決問題的方法的過程,體驗解決問題方法的多樣性。

  情感態(tài)度

  經(jīng)歷觀察、實驗計算、交流等活動,激發(fā)求知欲,體驗探究發(fā)現(xiàn)的快樂。

  教學重點

  建立方程解決實際問題,會通過移項解 “ax+b=cx+d”類型的一元一次方程。

  教學難點

  分析實際問題中的相等關系,列出方程。

  教學過程

  活動一 知識回顧

  解下列方程:

  1. 3x+1=4

  2. x-2=3

  3. 2x+0.5x=-10

  4. 3x-7x=2

  提問:解這些方程時,方程的.解一般化成什么形式?這些題你采用了那些變形或運算?

  教師:前面我們學習了簡單的一元一次方程的解法,下面請大家解下列方程。

  出示問題(幻燈片)。

  學生:獨立完成,板演2、4題,板演同學講解所用到的變形或運算,共同講評。

  教師提問:(略)

  教師追問:變形的依據(jù)是什么?

  學生獨立思考、回答交流。

  本次活動中教師關注:

 。1)學生能否準確理解運用等式性質和合并同列項求解方程。

  (2)學生對解一元一次方程的變形方向(化成x=a的形式)的理解。

  通過這個環(huán)節(jié),引導學生回顧利用等式性質和合并同類項對方程進行變形,再現(xiàn)等式兩邊同時加上(或減去)同一個數(shù)、兩邊同時乘以(除以,不為0)同一個數(shù)、合并同類項等運算,為繼續(xù)學習做好鋪墊。

  活動二 問題探究

  問題2:把一些圖書分給某班學生閱讀,如果每人分3本,則剩余20本;如果每人分4本,則還缺25本.這個班有多少學生?

  教師:出示問題(投影片)

  提問:在這個問題中,你知道了什么?根據(jù)現(xiàn)有經(jīng)驗你打算怎么做?

 。▽W生嘗試提問)

  學生:讀題,審題,獨立思考,討論交流。

  1.找出問題中的已知數(shù)和已知條件。(獨立回答)

  2.設未知數(shù):設這個班有x名學生。

  3.列代數(shù)式:x參與運算,探索運算關系,表示相關量。(討論、回答、交流)

  4.找相等關系:

  這批書的總數(shù)是一個定值,表示它的兩個等式相等.(學生回答,教師追問)

中學數(shù)學教案7

  許多人回想起學生時代的數(shù)學老師,常常有一個共同特征:表情嚴肅、特別認真。上課時將題目(特別是難題巧解)一絲不茍地演示給學生看,或者是拎著一沓卷子大步流星地邁進教室,然后威嚴宣布:“X分鐘內獨立完成,不許交頭接耳、相互討論!庇谑菍W生立刻埋頭演算,然后老師評判。

  隨著新一輪數(shù)學課程改革的推進與深化,多元化的評價體系正在建立,數(shù)學教學也正發(fā)生著變化。數(shù)學課堂再不是單一的從復習舊知、基礎訓練入手,而常常通過教師精心創(chuàng)設的一系列與生活相關的問題情境入手來導入新課;課堂上,老師不再是通過自己“嚴肅、認真、精湛的講演”來完成既定的教學任務,而常常是讓學生通過剪一剪,拼一拼,做一做,猜一猜,在實踐活動中發(fā)現(xiàn)數(shù)學、學習數(shù)學。這種教學方式不僅可以讓學生掌握數(shù)學的知識,而且讓學生了解了數(shù)學的來源,緊密聯(lián)系生活,激發(fā)了學習的興趣,關注了數(shù)學的過程與方法,拓展了對數(shù)學本質的理解和認識,培養(yǎng)了學生的合作意識。

  但對此的看法褒貶不一,認為數(shù)學教育的目的就是為了學好數(shù)學,學校要教“真正”的數(shù)學;這種做法“降低了數(shù)學思維訓練的作用”;“生活性、趣味性是增強了‘好玩了’,但數(shù)學沒有了”;“數(shù)學教學卡通化、去數(shù)學化了”。我們的文化氛圍不太習慣學術爭鳴,有的一線教師甚至發(fā)出了“課程改革我們應該聽誰的”感嘆。

  一、產(chǎn)生這種分歧的根源

  對一種現(xiàn)象不同的認識必然有深層的根源。原因可能是多方面,有社會的、心理的,更多則是學術觀點上的分歧,我認為從根本上講有兩個源頭。

  1.對數(shù)學知識理解和認識上的不同

  任何時期,數(shù)學家往往會根據(jù)自己的工作對數(shù)學形成一個看法,這在數(shù)學家內部往往也很難形成統(tǒng)一的意見。長期以來,數(shù)學知識被許多人認為是客觀的、確定的、普遍有效的體系。近年來,隨著相對論、測不準理論、模糊性科學的發(fā)展,以及以后現(xiàn)代知識觀從解構科學知識的元敘事出發(fā),試圖用對話、理解、協(xié)商來消解客觀知識,用差異性、復雜性、開放性、不確定性來取代統(tǒng)一性、簡單性、封閉性、確定性,倡導相對主義的知識觀。數(shù)學史學家M.Kline更為明確地提出了“數(shù)學:確定性的喪失”,提出“數(shù)學注定是要探索而不是知道,去追求真理而不是發(fā)現(xiàn)真理”,這是對數(shù)學教學中重視過程性知識、進行探索活動的有力支持。

  數(shù)學研究需要演繹證明,但也離不開歸納、實驗、猜想。數(shù)學的發(fā)展正如英國著名的科學史學家丹皮爾所總結的:“希臘學者關于演繹幾何學的偉大發(fā)現(xiàn),使得亞里士多德在創(chuàng)立邏輯時,過于偏重推理。反之,費蘭西斯?培根堅持認為歸納法具有獨特無二的重要性。這是一種自然的反動,因為他看到新的實驗方法具有遠大的前途。穆勒指出,真正的科學方法,應包括歸納與演繹,這樣就把亞里士多德的研究與培根的研究成果結合起來了。”5經(jīng)典數(shù)學被認為是一門演繹的科學,抽象和嚴謹使數(shù)學顯示出獨特的魅力和神奇的力量,證明與推理是經(jīng)典數(shù)學研究的主要方法,F(xiàn)代數(shù)學的發(fā)展表明,數(shù)學不只是邏輯推理與證明,更需要歸納、猜想、審美直覺、實驗、探索。隨著現(xiàn)當代數(shù)學的發(fā)展,數(shù)學中的算法與實驗愈益顯示出威力。在計算機上進行計算和模擬實驗已成為一種新的科學方法和技術。由于這種研究方法是與傳統(tǒng)方法很不相同的,計算機的使用正在改變數(shù)學的性質,數(shù)學正在由傳統(tǒng)的演繹的科學轉化為一門實驗與演繹并重的科學。

  2.數(shù)學中“活動”的不同理解

  對數(shù)學教學中要讓學生主動參與到數(shù)學學習活動中來現(xiàn)在一般持贊同意見,但對參與活動的方式卻有不同的理解。數(shù)學中的柏拉圖主義認為,數(shù)學是理念世界的產(chǎn)物,與實踐經(jīng)驗無關的科學。在這種觀點支配下,則認為數(shù)學“活動”只是“智力活動”。從事數(shù)學研究、學習數(shù)學只要紙和筆加上一個聰明的腦袋。然而,數(shù)學中的經(jīng)驗主義、擬經(jīng)驗主義的數(shù)學觀明確指出了數(shù)學發(fā)展對“理念世界”和“物理世界”經(jīng)驗的雙重依托。數(shù)學是抽象的科學,但經(jīng)過多次抽象,遠離經(jīng)驗之源后,如果不回到經(jīng)驗就有退化的危險。許多數(shù)學家、數(shù)學哲學家都強調數(shù)學理性與經(jīng)驗的兩個側面的不可或缺性。人們公認的最偉大的數(shù)學家阿基米德、牛頓、高斯、龐卡萊都同是偉大的物理學家,現(xiàn)代數(shù)學發(fā)展的趨勢也表明,只有具有現(xiàn)實意義的數(shù)學分支才具有廣闊的研究前景。無疑,學生的數(shù)學學習過程中,動手操作、實踐這樣的數(shù)學探究活動也是數(shù)學教學實踐中不可缺少的一種重要的學習方式。這是受現(xiàn)代數(shù)學發(fā)展內在規(guī)律所制約的。

  二、對數(shù)學“活動”教學的認識

  關于活動教學的思想源于公元前335年亞里士多德在呂克昂從事教學和科學研究活動。據(jù)說,他和他的學生喜歡在林蔭道上一邊散步一邊講學討論,所以他的學派也被稱為逍遙學派。1近代,皮亞杰在其發(fā)生認識論中強調內在智力過程起源于活動,前蘇聯(lián)的列維魯學派繼承了皮亞杰重視“活動”的傳統(tǒng),并對皮亞杰的理論進行了拓展,強調:不僅認知起源于外部活動,個體非認知發(fā)展也同樣源于活動。人類一切心理活動都是在社會歷史發(fā)展過程中被改造為內部活動,意識活動是物質生活發(fā)展的結果和衍生物。皮亞杰關于兒童認識發(fā)展的研究證明了反身抽象是數(shù)學概念獲得的主要方式,邏輯數(shù)學結構不是由客體的'物理結構或因果結構派生出來的,而是“一系列不斷的反身抽象和一系列連續(xù)的自我調節(jié)的建構。”在學生能夠富有意義的理解概念和原理的抽象形式之前,通過“動手操作”對數(shù)學對象進行具體的活動操作,是數(shù)學學習的一個重要環(huán)節(jié)。以杜威為代表的進步主義教學主張教育的內容要與兒童的社會生活經(jīng)驗和活動密切相連,兒童的經(jīng)驗興趣決定課程的內容和結構,倡導以兒童的主體活動的經(jīng)驗為中心來組織教學活動。即便是像數(shù)學這樣的理性學科也不能例外,“因為理性就是實驗的智慧……而它的作用又常在經(jīng)驗中受到檢驗”;顒訉體的影響是廣泛的,不只局限于學習方面,學生參與活動對其心理發(fā)展具有重要的意義。具體而言,參與具有認知性和非認知性雙重功能。對知識的掌握,思維能力的發(fā)展,學業(yè)成績的提高以及學習興趣、態(tài)度、意志品質都具有積極的意義。事實上,人不僅可以從參與現(xiàn)實的生活情境中獲得體驗,而且可以從活動中產(chǎn)生原動力。只有不斷獲得新動力,滿足人的高度自主、主體的需要的活動,才是最有效、最有價值的活動。強調活動的實踐性和能動性,讓學生積極參與到教學活動過程中去,實現(xiàn)“實踐——認識——再實踐——再認識”的能動過程,有利于學生潛力的開發(fā)。

  通過教師的引導,學生自主參與,密切數(shù)學與生活實際的聯(lián)系,掌握數(shù)學知識的發(fā)生、形成過程和數(shù)學建模方法,形成用數(shù)學的意識。數(shù)學教學中,盡可能讓學生操作、討論、作圖、制作模型,教師讓學生通過自己的實踐學習數(shù)學。正如法國科學院院士G.?Cjoquest所說,“應充分利用學生的主動性,他們不是通過聆聽一堂清晰美的講課來學習數(shù)學,而是通過對數(shù)學對象作實驗而學習。”在數(shù)學教學中,所有能使學生進入個人活動的方法都應該使用,教師的作用并非只是準備一堂單純的課,而是要尋找使學生最大限度地參與活動的方法。

  三、數(shù)學活動如何更好地幫助學生理解數(shù)學,促進身心全面發(fā)展

  傳統(tǒng)的數(shù)學教學中,許多數(shù)學老師信奉“精講多練”的金律,因為這種教學“效率高”,在知識的再現(xiàn)時會“熟能生巧”、“運用自如”。當然數(shù)學學習中活動不是不重視,獨立思考、獨立做題等“思維活動”一直是首倡的學習方式。因為“數(shù)學是思維的體操”,自然在有些人看來,數(shù)學學習中的活動就是思維活動,誰解題快、準,誰就能得高分,數(shù)學就學得好。數(shù)學學習的目的因而簡(異)化為能得到一個理想的分數(shù),進而升入一所理想的學校。這是許多學生、教師追求的“目標”(當然也成為相關部門評價的標準)。數(shù)學的應用,數(shù)學與生活的聯(lián)系只是一種裝飾(如果與考試無關)。數(shù)學學習對大多數(shù)學生而言只不過是一個“跳板”,甚至是一種無奈。雖然幾乎每個人都知道學數(shù)學很重要,但是多數(shù)人只是由于在“知識改革命運”中舉足輕重——作為一個篩子決定了一個人的“前程”。這種教學方式(思想)在一定程度上成為中國數(shù)學教育的“特色”。

  20xx年9月7日全美數(shù)學教師理事會(NCTM)前主席W.Lott博士率領32人數(shù)學教育代表團來北京師范大學數(shù)學科學學院訪問,介紹到美國的數(shù)學課堂大多數(shù)由學生自己進行活動、探索30-35分鐘,甚至更多,老師講得很少。他們也在反思,這種教學方式是不是效率太低。他們聽說,在中國的情形是不是正好相反,基本上都由老師來講解,問我們這是不是真的?如何看待這一問題。中美雙方基本的看法是需要“尋找中間地帶”。事實上,我們的數(shù)學課堂正在(或者說已經(jīng))發(fā)生變化。

  這種變化是不是走過頭了?不可否認,這種負面的現(xiàn)象由于種種原因已經(jīng)出現(xiàn)。20xx年6月,作為中加合作研究項目到西部某縣城調研,在某小學聽數(shù)學課,學校領導為了能讓數(shù)學課“活動起來”,安排了一位“有感染力的語文老師來上數(shù)學”,課上老師的“表演”算是出色,以生動活潑、富有趣味性的卡通畫來增加數(shù)學的趣味性,但就是數(shù)學沒有了,學生也難“活動”起來。對數(shù)學活動回歸生活的這種理解必然會出現(xiàn)數(shù)學教學卡通化代替數(shù)學化的現(xiàn)象,對數(shù)學教學產(chǎn)生嚴重的危害。

  讓學生從輕松、愉快的情境中學習數(shù)學其實并沒走過頭,而是折射出大量具體的實踐需要我們去探索、總結。一些專家、學者的批評意見并不是要在教學實踐中封殺活動、探究數(shù)學與生活的聯(lián)系,而提醒人們在實踐中應注意的問題。而且理論研究常常是超前的,也必須是超前的。作為教育任務的數(shù)學,其目的應是為了促進學生的身心發(fā)展,形成完滿的人格。正如弗賴登塔爾所言:“不要忘記數(shù)學在社會中扮演的角色,在過去、現(xiàn)在一直到將來,教數(shù)學的教室不可能浮在半空中,而學數(shù)學的學生也必然是屬于社會的”。因此不該“一味追求現(xiàn)代數(shù)學中形式變換的花樣”,一般說來,常規(guī)的課堂教學重知識的系統(tǒng)性,而通過活動的方式學習則更注重過程、培養(yǎng)興趣。事實證明,特別是在小學階段教學過程中只有將數(shù)學與它有關的現(xiàn)實世界背景緊密聯(lián)系在一起,也就是說只有通過具體問題情景到抽象化形式化的數(shù)學化過程來進行數(shù)學的教與學,才能使學生獲得充滿著關系的、富有生命力的數(shù)學知識。

中學數(shù)學教案8

  教學目的:

  1、掌握掌握平面與平面間距離的概念,并能求出它們的距離

  2、弄清平行平面之間的距離的定義;

  教學重點:平行平面的距離的求法教學難點:平行平面的距離的求法

  教學過程:

  一、復習引入:

  1、點到平面的距離:已知點是平面外的任意一點,過點作,垂足為,則唯一,則是點到平面的距離即:一點到它在一個平面內的正射影的距離叫做這一點到這個平面的距離(轉化為點到點的距離)結論:連結平面外一點與內一點所得的線段中,垂線段最短

  2、直線到與它平行平面的距離:一條直線上的任一點到與它平行的平面的距離,叫做這條直線到平面的距離(轉化為點面距離)

  二、講解新課:

  1、兩個平行平面的公垂線、公垂線段:

  (1)兩個平面的公垂線:和兩個平行平面同時垂直的直線,叫做兩個平面的公垂線

 。2)兩個平面的公垂線段:公垂線夾在平行平面間的部分,叫做兩個平面的公垂線段

 。3)兩個平行平面的公垂線段都相等

 。4)公垂線段小于或等于任一條夾在這兩個平行平面間的線段長2、兩個平行平面的'距離:兩個平行平面的公垂線段的長度叫做兩個平行平面的距離

  三、講解范例:

  例1如圖,已知正三角形的邊形為,點D到各頂點的距離都是,求點D到這個三角形所在平面的距離解:設為點D在平面內的射影,延長,交于,∴,∴即是的中心,是邊上的垂直平分線,在中,即點D到這個三角形所在平面的距離是。

  四、課堂練習:

  五、課后作業(yè):

中學數(shù)學教案9

  總結提問:通過列方程解決實際問題分析時,要經(jīng)歷那些步驟?書寫時呢?

  教師提問1:這個方程與我們前面解過的方程有什么不同?

  學生討論后發(fā)現(xiàn):方程的兩邊都有含x的項(3x與4x)和不含字母的常數(shù)項(20與-25).

  教師提問2:怎樣才能使它向x=a的形式轉化呢?

  學生思考、探索:為使方程的.右邊沒有含x的項,等號兩邊同減去4x,為使方程的左邊沒有常數(shù)項,等號兩邊同減去20.

中學數(shù)學教案10

  5以內的加減法第二課時

  一、創(chuàng)設情境

  昨天我們看到了一些小朋友在校園里澆花,今天他們又來了。你們看……(出示掛圖)

  二、知識探索

  1、看掛圖,弄清圖意。從連續(xù)的兩幅圖中了解原來

  有5個同學澆花,走掉2人后,還剩下3人。

  2、教學減法的一些知識。對5 – 2 =3的含義,要學

  生從具體情境里體會、感受。5 – 2 的'計算,讓學生自己說說算法,可以聯(lián)系具體問題想,也可以用分與合的方法去想。

  3、試一試。多數(shù)學生會列出算式3 –2 =1,也有可

  能一些學生會列出算式3 – 1 =2。只要解釋符合圖意,就應該肯定。

  三、知識應用

  1、第1題、第2題要先說一說或擺一擺,再填寫算

  式,并應該組織學生進行小組交流,說說自己的想法。

  2、第4題先要說一說圖意,弄清條件和問題,再寫

  出算式并計算,然后交流自己的想法,體驗提出和解決問題的過程,進一步體會減法算式的含義。

  3、第5題要讓同學之間合作練習。還要根據(jù)班級實

  際,創(chuàng)設一些學生喜歡的練習形式,促進學生主動參與數(shù)學活動,鞏固2——5的加減法。

  四、知識總結

  五、能力檢測:

  練習與檢測

中學數(shù)學教案11

  教學過程:

  一、計算訓練:

  出示:

  450-120×8÷6180-40×4+÷5-12×3

  (45+36)×(78-66)672-(250-18×5)(530-170)÷(15×4)

  讓學生任選

  一、二道題說說運算順序,在計算,比一比誰算得又快又對。學生完成后,集體訂正。

  二、解決問題

  1、某小學四年級一個班中有女生22人,男生有25人,四年級有13個這樣的班級,一共有學生多少人?

  學生審題后獨立完成。

  集體訂正時說說是怎樣想的。

  比較:22×13+25×13 與(22+25)×13之間有什么區(qū)別和聯(lián)系。

  2、果園里要運送1200箱水果,一輛卡車4次運了480箱,照這樣計算,還要運多少次才能運完?

  分析:還要運多少次是什么意思?(是指運完480箱之后剩下的還需運的次數(shù))要求還要云幾次先要求出什么?(剩下的'箱數(shù)和每次運的箱數(shù))學生審題后獨立完成。

  集體訂正時說說是怎樣想的。

  三、解決問題,書本第6-9題。

  第六題:討論“照這樣計算表示什么意思”“再增加2兩輛卡車”后現(xiàn)在有多少亮參與運輸。要求一共可以運多少箱“必須要知道哪兩個條件?學生列式計算,集體訂正,說說自己的解題過程。

  第七題:

  分析:要求“四年級比六年級少栽多少棵?”必須知道哪兩個條件?這兩個條件是否都已知?怎樣列式?

  學生列綜合算式進行解答。

  第八題:

  著重引導學生理解“用面積9平方分米的方磚,460塊正好鋪滿”表示什么意思?

  學生列式解答。

  第九題:

  學生先獨立完成后再討論。

中學數(shù)學教案12

  一位來自阿肯色州的年輕太太格羅麗亞,正在加利福尼亞州旅行.她想在旅館租用一個房間,租期一周.辦事員此時正心緒不佳。辦事員:房費每天20元,要付現(xiàn)錢.格羅麗亞:很抱歉,先生,我沒帶現(xiàn)錢.但是我有一根金鏈,共7節(jié),每節(jié)都值20元以上.辦事員:好吧,把金鏈給我.格羅麗亞:現(xiàn)在不能給你.我得請珠寶匠把金鏈割斷,每天給你一節(jié),等到周末我有了現(xiàn)錢再把金鏈贖回.辦事員終于同意了,但格羅麗亞必須決定如何斷開金鏈的方法.格羅麗亞:我該三思而行,因為珠寶匠是按照他所切割和以后重新連接的節(jié)數(shù)來索價的.格羅麗亞想了一下,悟到她不必把每一節(jié)都割斷,因為她可以把一段段金鏈換進換出,以這種方式來付房費.當她算出需要請珠寶匠割斷的節(jié)數(shù)時,她幾乎不能自信。你想一想需要割開多少節(jié)?

  只需要割開一節(jié)。這一節(jié)應是從一端數(shù)起的第三節(jié).把金鏈斷開成1節(jié),2節(jié),4節(jié)這樣三段后就能以換進換出的方式每天付給辦事員一節(jié)作為房費。

  啊哈!領悟到下列兩點才能解題.第一,至少需要有1節(jié),2節(jié),4節(jié)這樣三段(即其節(jié)數(shù)成二重級數(shù)的一些段),這樣才能以各種不同的組合方式組成1節(jié),2節(jié),3節(jié),4節(jié),5節(jié),6節(jié)和7節(jié).我們在藥品混亂問題中已經(jīng)知道,這就是作為二進制記數(shù)法基礎的冪級數(shù).

  第二,只需要割開一節(jié)就可以把金鏈分成符合要求的三段.關于這個問題,若把金鏈的長度增加,則可以想出一些新的問題.例如,假設格羅麗亞有一根63節(jié)的金鏈,她想把金鏈割開,以上面那種方式來付63天的房費(價格不變).要達到此種目的只需要割開三節(jié).你想出來了嗎?你能否根據(jù)金鏈的不同長度設計一個通用的解題程序,要求分割開的節(jié)數(shù)為最少?

  有一個有趣的變相問題:若所經(jīng)手的n節(jié)首尾相連的閉合回路,例如說格羅麗亞有一串金項鏈,由79節(jié)相連而成,若每天房費為一節(jié),試問最少需要分割開幾節(jié)才能支付79天房費?

  所有這些問題都跟二進制記數(shù)法有密切的關系.比如格羅麗亞的63節(jié)金項鏈如何分割?只要將63化成二進制表示:等于111111即63=1+2+4+8+16+32只要將從第二節(jié)開始的兩節(jié)割開,再將從第八節(jié)開始的八節(jié)割下來,和從第32節(jié)開始的32節(jié)割下來即可,這樣就有了從1,2,3,4,5,6,直到63的所有節(jié)數(shù).一般地,若有n節(jié)金鏈,n是形如2k-1類型的數(shù),將n化成二進制表示,再將所有1的位置所代表的2的冪的數(shù)相間隔地割開即可達到目的.但是對于其他任意類型的數(shù),卻不能奏效,比如對于格羅麗亞的79節(jié)金項鏈,79的二進制記數(shù)法表示為1001111.即79=1+2+4+8+0+0+64,這樣從1到15都能表示,可是從16到63都沒法表示,我把這個問題做到這里,也一時糊涂起來,但這個問題畢竟不是很復雜,咱們也學一學閔科夫斯基在課堂上口出狂言要解決四色問題的勁頭,摸索著來解決一把.咱們可以這樣:你不是要求節(jié)數(shù)最少嗎?假設n=a+b其中a是已經(jīng)找到的最大的那一節(jié)數(shù),b是比n小的已經(jīng)解決了的金鏈問題,由于b已經(jīng)解決,因此b的拆分能夠表示從1,2,3,...b-1,b的所有金鏈節(jié)數(shù),而再大一些的數(shù)就不能夠表示了,比如b+1,所以必須要a參加進來,如果n是奇數(shù),可令a=b+1,這樣n=2b+1,所以b=(n-1)/2,a=(n+1)/2,這樣就找到了最大的一節(jié)的節(jié)數(shù)a,然后對b=(n-1)/2繼續(xù)應用如上的'辦法,即可解決問題.如果n是偶數(shù),可令a=b,這樣雖然a本身不能表示出b+1,但是可以從b的拆分中拿出一個1來(這個1是必須存在的,因為要表示從1,2,3,...b-1,b的所有數(shù))與a組成a+1也就是b+1.所以n=a+b=2a=2b,a=b=n/2.這樣也找到了n為偶數(shù)時最大的一節(jié)金鏈的節(jié)數(shù).對于b繼續(xù)如上的過程,就可以找到全部應該斷開的金鏈節(jié)數(shù),我算出了從1到15的所有拆分如下:

  1=1

  2=1+1

  3=1+2

  4=1+1+2

  5=1+1+3

  6=1+2+3

  7=1+2+4

  8=1+1+2+4

  9=1+1+2+5

  10=1+1+3+5

  11=1+1+3+6

  12=1+2+3+6

  13=1+2+3+7

  14=1+2+4+7

  15=1+2+4+8

  對于上面的格羅麗亞太太的79節(jié)金項鏈,79+1=80,80/2=40,所以最大的一節(jié)就是40節(jié),79-40=39,39+1=40,40/2=20,所以第二大的一節(jié)就是20節(jié),39-20=19,19+1=20,20/2=10,第三大的一節(jié)是10節(jié),19-10=9,9+1=10,10/2=5,又找到了一節(jié)是5,9-5=4,4的表示法如上已經(jīng)列出來了:4=1+1+2.最后得到79節(jié)的金項鏈的分割法:1,1,2,5,10,20,40.過去我也碰到過一道類似的題,是23節(jié)金項鏈,也能夠很容易地解決:23+1=24,24/2=12;23-12=11,11=1+1+3+6;所以23的分割法為:1,1,3,6,12.顯然,對于2k-1類型的數(shù),用這里的辦法與用二進制記數(shù)法得出的結果是一致的.

  從上面所列出的拆分法可以看出,如果2k=2k+1,那么n一定要用k+1個數(shù)來表示,即:n=a0+a1+a2+...+ak.

  可以用數(shù)學歸納法很容易地證明這是正確的.那么還有沒有比這更少的分割法呢?可以證明沒有了.從我們的分析方法中可以看出,這是一個構造性的推理過程,假如還有比這更少的分割法,那么相當于在表達式n=a0+a1+a2+...+ak.中進行了某些組合,比如將a1+a2合并成新的a1,那么原來的有些組合就表示不出來了,例如a0+a2,就沒有辦法組合了.當然,一個數(shù)的拆分不是唯一的,前面的23節(jié)金鏈還可以分成1,2,3,6,11.你可以試試,這種分割法照樣能滿足要求.前面的分析中也可以把(n-1)/2留下來作為最大的節(jié)數(shù),但是這樣分出來的節(jié)數(shù)就不一定都是最少的了,例如把15這樣分割,會得到:1,1,2,4,7.雖然能夠滿足付房費的要求,但是就不是最優(yōu)解了.最后總結一下,把前面的算法過程公式化可以得到:

  k-1r-1k-1

  n=(n+c0)/2+{[n-cs2s+cr2r]/2r+1}+[n-cr2r]/2k

  r=1s=0r=0

  其中c0,c1,...ck-1等等是1或是0取決于每一步得出的數(shù)的奇偶性.其實最后一項等于1,這樣可以得出:

  k-1

  n-2k=cr2r

  r=0

  a0=(n+c0)/2

  i-1

  ai=[n-cs2s+ci2i]/2i+11(i=1,2,3,...k-1)

  s=0

  ak=1

  當然,編成計算機程序還是用遞歸程序比較簡單.這里列出這些公式是為了保留存照。

中學數(shù)學教案13

  2.某貨運公司要用若干輛汽車運送一批貨物。如果每輛拉6噸,則剩余15噸;如果每輛拉8噸,則差5噸才能將汽車全部裝滿。問運送這批貨物的汽車多少量?

  3.小明步行由A地去B地,若每小時走6千米,則比規(guī)定時間遲到1小時;若每小時走8千米,則比規(guī)定時間早到0.5小時。求A、B兩地之間的距離。

  教師按順序出示問題。

  學生獨立完成,用實物投影展示部分學而生練習。

  教師關注:

  1.學生在計算中可能出現(xiàn)的錯誤。

  2.x系數(shù)為分數(shù)時,可用乘的辦法,化系數(shù)為1。

  3.用實物投影展示學困生的完成情況,進行評價、鼓勵。

  鞏固“ax+b=cx+d”類型的`一元一次方程的解法,反饋學生對解方程步驟的掌握情況和可能出現(xiàn)的計算錯誤。

  2、3題的重點是在新情境中引導學生利用已有經(jīng)驗解決實際問題,達到鞏固提高的目的。

  活動五

  提問1:今天我們學習了解方程的那種變形?它有什么作用、應注意什么?

  提問2:本節(jié)課重點利用了什么相等關系,來列的方程?

  教師組織學生就本節(jié)課所學知識進行小結。

  學生進行總結歸納、回答交流,相互完善補充。

  教師關注:學生能否提煉出本節(jié)課的重點內容,如果不能,教師則提出具體問題,引導學生思考、交流。

  引導學生對本節(jié)所學知識進行歸納、總結和梳理,以便于學生掌握和運用。

  布置作業(yè):

  第93頁第3題

【中學數(shù)學教案】相關文章:

中學數(shù)學教案02-28

數(shù)學教案大班06-23

簡單的數(shù)學教案08-03

初中數(shù)學教案04-15

小學數(shù)學教案[精選]08-04

小學數(shù)學教案【經(jīng)典】08-01

[經(jīng)典]小學數(shù)學教案08-09

初中數(shù)學教案11-26

幼兒的數(shù)學教案03-01